21 research outputs found

    Techniques and countermeasures of TCP/IP OS fingerprinting on Linux Systems

    Get PDF
    Thesis (M.Sc. - Computer)-University of KwaZulu-Natal, Durban, 2007.Port scanning is the first activity an attacker pursues when attempting to compromise a target system on a network. The aim is to gather information that will result in identifying one or more vulnerabilities in that system. For example, network ports that are open can reveal which applications and services are running on the system. How a port responds when probed with data can reveal which protocol the port utilises and can also reveal which implementation of that protocol is being employed. One of the most valuable pieces of information to be gained via scanning and probing techniques is the operating system that is installed on the target. This technique is called operating system fingerprinting. The purpose of this research is to alert computer users of the dangers of port scanning, probing, and operating system fingerprinting by exposing these techniques and advising the users on which preventative countermeasures to take against them. Analysis is performed on the Transmission Control Protocol (TCP), User Datagram Protocol (UDP), Internet Protocol (IPv4 and IPv6), and the Internet Control Message Protocol (ICMPv4 and ICMPv6). All the software used in this project is free and open source. The operating system used for testing is Linux (2.4 and 2.6 kernels). Scanning, probing, and detection techniques are investigated in the context of the Network Mapper and Xprobe2 tools

    Contractible arms elevating search and rescue (Caesar) robot : improvements and modifications for urban search and rescue (Usar) robots.

    Get PDF
    Thesis (Ph.D.)-University of KwaZulu-Natal, Durban, 2010.Rescuers have lost their lives in events requiring them to go into dangerous areas that have unstable structures and gases. Robots are necessary for search and rescue purposes, to access concealed places and environments to which fire fighters and rescue personnel cannot gain entry. Robots that were previously used encountered problems with communication, chassis design, traction and sensory systems. Improvements are required for the successful localization of victims. Research on improvements in these areas were carried out for the use in the CAESAR (Contractible Arms Elevating Search And Rescue) robot. Contributions were made in the area of Urban Search And Rescue (USAR) robots focusing on antenna design, communication protocols, chassis design, traction system and artificial intelligence on decisions relating to gas danger levels for humans and the robot. The capabilities of CAESAR is audio, video and data communication irrespective of the orientation of the robot and the antennas. Penetration of radio frequencies through building material is possible. Reliable data communication is achieved with the designed Robotics Communication Protocol (RCP). The chassis is designed to have traction on unstable terrain and autonomously transform flipper arms for the best orientation. Materials for the body were selected and constructed to be able to withstand the unstable environments and high temperatures which they will encounter. The control station display gives the rescuers immediate indication of the gas concentrations detected by the on-board gas sensors. Developed analytical models determine the danger of the gas concentrations for victims, rescuers and the robots

    R2T2 : Robotics to Integrate Educational Efforts in South Africa and Europe

    Get PDF
    This paper presents the first cross-continental collaborative robotic event based around education. It was entitled R2T2 and it involved more than 100 children from Europe and Africa. Based on remote programming, video streaming feedback, and a scenario of collaborative space rescue, R2T2 focused on pedagogical elements that are fundamentally different than those characterizing classic robotic competitions. The value of these educational actions is shown through the results of a survey conducted among the participants; the working methodologies by the African students were significantly enhanced and there was a broad inclusion in general, despite the fact that some gender issues lingered. This paper's contribution is to demonstrate an approach to implementing a north-south collaboration to get school students excited about robotics and the problem-solving skills required in engineering

    Customizable Rehabilitation Lower Limb Exoskeleton System

    No full text
    Disabled people require assistance with the motion of their lower limbs to improve rehabilitation. Exoskeletons used for lower limb rehabilitation are highly priced and are not affordable to the lowerincome sector of the population. This paper describes an exoskeleton lower limb system that was designed keeping in mind that the cost must be as low as possible. The forward kinematic system that is used must be a simplified model to decrease computational time, yet allow the exoskeleton to be adjustable according to the patient's leg dimensions

    Experimental study of bullet-proofing capabilities of Kevlar, of different weights and number of layers, with 9 mm projectiles

    No full text
    Kevlar is the most commonly used material as armour for protection against bullets used in hand guns because of its impact resistance, high strength and low weight. These properties make Kevlar an ideal material to be used in bullet-proof vests as compared to other materials. In the present study, different numbers of layers of Kevlar with different weights are tested to determine the weights and the number of layers needed to design a safe bullet-proof vest. For this purpose, several ballistic tests were performed on combinations of ballistic gel and Kevlar layers of different weights. Ballistic impacts are generated by 9 mm Parabellum ammunition. The objective is to assess the characteristics of high-speed ballistic penetration into a combination of a gel and Kevlar and determine the number of layers needed to safely stop the 9 mm bullet and thereby contribute to the design of safe bullet-proof vests. The tests provide information on the distances the bullets can travel in a gel/Kevlar medium before they are stopped and to identify the resistance capabilities of Kevlar of different grams per square meter (GSM). The tests were conducted with the use of a chronograph in a controlled test environment. Specifically, results identify the number of layers of Kevlar required to stop a 9 mm Parabellum projectile, and the effectiveness of using different number of layers of GSM Kevlar material. Keywords: Kevlar, 9 mm Parabellum bullet, Ballistic impact, Ballistic gel, Material testin

    Performance of the Improvements of the CAESAR Robot

    No full text
    Robots are able to enter concealed and unstable environments inaccessible to rescuers. Previous Urban Search And Rescue (USAR) robots have experienced problems with malfunction of communication systems, traction systems, control and telemetry. These problems were accessed and improved in developing a prototype robot called CAESAR, which is an acronym for Contractible Arms Elevating Search And Rescue. Problems encountered with previous USAR robots are discussed. The mechanical, sensory and communication systems that were used on CAESAR are briefly explained. Each system was separately tested by performed experiments. Results of field tests and the robot performance experienced during a disaster scenario that was created are discussed. The capabilities of CAESAR are explained in these tests to determine if some of the problems experienced previously are solved

    Quad-Rotor Unmanned Aerial Vehicle Helicopter Modelling & Control

    No full text
    This paper presents the investigation of the modelling and control of a quad-rotor helicopter and forms part of research involving the development of an unmanned aerial vehicle (UAV) to be used in search and rescue applications. Quad-rotor helicopters consist of two pairs of counter rotating rotors situated at the ends of a cross, symmetric about the centre of gravity, which coincides with the origin of the reference system used. These rotors provide the predominant aerodynamic forces which act on the rotorcraft, and are modelled using momentum theory as well as blade element theory. From this, one can determine the expected payload capacity and lift performance of the rotorcraft. The Euler-Lagrange method has been used to derive the defining equations of motion of the six degree-of-freedom system. The Lagrangian was obtained by modelling the kinetic and potential energy of the system and the external forces obtained from the aerodynamic analysis. Based on this model, a control strategy was developed using linear PD controllers. A numerical simulation was then conducted using MATLAB® Simulink®. First, the derived model was simulated to investigate the behaviour of the rotorcraft, and then a second investigation was conducted to determine the effectiveness of the implemented control system. The results and findings of these investigations are then presented and discussed
    corecore